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Recently Michael Reed criticized the calculus curriculum for
teaching how to differentiate functions of the form f(z)9(*) without
providing any real applications [Reed 1987]. Without endorsing
Reed’s sentiment, we present an everyday application of such a
differentiation.

The return on money invested at a given annual rate of interest
varies with the frequency of compounding. Common wisdom says:
The more frequent the compounding, the greater the return; and
“continuous compounding” beats all. True, but texts do not prove
these facts. They may carefully

e derive the familiar formula P(1+r/n)" for the year-end account
balance after n compoundings of principal P at annual interest
rate /(= 100r%),

e resort to a table of computations for a few selected values of n
(such as n = 1,2, 4, 365, 525600), and

e conclude with a hand-wave that common wisdom is correct.

This shaky five-example hand-waving can be smoothed out nicely
with a short exercise in logarithmic differentiation.
For positive numbers P and r, let

A(:x;):P(l-i--;—') , forz>0.

This differentiable function agrees with P(1 + r/n)" for natural
numbers n and (as shown below) has a positive derivative on (0, o).



22 The UMAP Journal 11.1

Hence, the sequence A(n) = P(1 + r/n)" is indeed increasing;
common wisdom is verified.

To see that A’ is positive on (0,00), use logarithmic differenti-
ation to obtain

A'z) = A(z) [ln(l 4 2) _

The factor A(z) is positive. Name the second factor f(z). Since

r
r+r

], for z > 0.

_7-2

f(z)=m

is negative for z > 0, f is decreasing on (0, 00). Moreover, lim,_. o f(z) =
0. Thus, f must be positive on (0,00). And so A’ = Af, the prod-
uct of two positive factors, must also be positive on (0, 00).

Now that we have established that earnings are greater if the
interest is compounded more times per year, we need a standard
to tell just how good a deal we are getting. This is the role of the
popularly advertised “effective annual rate of interest,” the annual
once-compounded rate needed to obtain the same return as the
multiply-compounded investment.

For example, if P dollars is invested at 8% compounded semi-
annually (i.e., twice), its value after one year is P(1 + .08/2)2 =
P(1.0816) dollars (exactly). To produce the same amount of money
in one year with the same investment of P dollars compounded once
at annual rate R/(= 100R%) requires that

1
P(l $ ?) = P(1.0816),

so that R = 0.0816 = 8.16%. We say that the effective rate of inter-
est of 8% compounded semiannually is 8.16%. More precisely, for
annual interest rate r and n compoundings per year, the effective
rate of interest R is defined by

R= (1+3) -1
n

Observe that for ény principal P, the effective rate R is the
solution to the equation

1 n
P(1+5> =P(1+1) .
1 n)

To verify that the effective rate increases with the number of
compoundings, fix r, think of R as a function of n

R(n) = (1 + %)n = I,
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and observe that R(n) = A(n)/P — 1, where A(n) = P(1+ r/n)".
Since we have already proved that A(n) increases with n , it follows
that R(n) does likewise. '

Even though the year-end return on an investment increases
with the number of compoundings during the year, Table 1 sug-
gests, as has been known for several centuries, that the luxury
of specifying an enormously large n will not create gaudy wealth.
Jacob Bernoulli (ca. 1700) proposed the question: Through con-
tracts specifying ever larger n, does the depositor gain unlimited
return? [Toeplitz 1963, 23-28]. Today we simply observe that

n mqr

lim A(n) = lim P<1+1) = lim P[(1+l) ] ,
n—00 n— o0 n m—00 m
where m = n/r,

= Pe".

A bank that advertises “continuous compounding” uses this
theoretical limit to determine the year-end value of the account.
Since A(n) is an increasing sequence with limit Pe”, continuous
compounding does indeed return more than any finite number of
compoundings; more of the common wisdom verified!

Moreover, the effective rate of interest for continuous com-
pounding is defined to be the once-compounded rate 100 R% needed
to achieve the continuously compounded return Pe" . Solving
P(1+ R/1)! = Pe", we have R = €¢" — 1. Since ¢” — 1 is also
the limit of the increasing sequence R(n) of effective rates of inter-
est, it follows without surprise that the effective rate of interest of
continuous compounding is greater than that of any finite number
of compoundings.

Table 1.
Year-end value A and the effective rate of interest R

for $1 compounded n times, for interest rates of 10% and 100%.

r = 10% r = 100%
n A R A R
1 (annually) 1.10000 10.000% 2.000 100.0%
2 (semiannually) | 1.10250 10.250% 2.250 125.0%
4 (quarterly) 1.10381 10.381% 2.441 144.1%
365 (daily) 1.10516 10.516% 2.714 171.4%
continuously 1.10517 10.517% | e ~2.718 171.8%
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