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4.2 Numerical Analysis
Perelson’s model is sufficiently complex to allow extended analysis well be-

yond the scope of this Module. Rather than seeking exact solutions analytically,
we follow Perelson et al. [1993] and use Mathematica to obtain approximate
numerical solutions to this system.

Table 1 gives the initial and constant values (based on experimental data)
used in our numerical simulations. We focus on how the value of N (the
number of infectious virus particles produced per actively infected cell) affects
the long-term T-cell concentration.

In Figure 3 (see the Appendix for the Mathematica commands to generate
this figure), with N = 500, we see that the uninfected T-cell level approaches a
steady-state concentration of Tuninfected= 1000 cells mm−3 after about 150 days.

Figure 3. T (t) converges to the stable equilibrium value Tuninfected = 1000 when N = 500.

Investigating sensitivity of the system to changes in the parameter N , we
find that a small increase in N does not affect this steady-state concentration.
However, if we increase N to 1400, the stable steady-state concentration de-
creases dramatically to about 580 cells mm−3 (Figure 4).

Figure 4. When N = 1400, the equilibrium value Tuninfected = 1000 is unstable but the equilibrium
value Tuninfected = 580 is stable.

If we continue to increase the value of N , the steady-state concentration
will continue to decrease. This suggests that there is a critical value of N
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beyond which there is an important change in the stable steady-state values of
T . We now gain insight into this numerical observation by means of equilibrium
stability analysis.

4.3 Equilibrium Analysis
Analytical methods are helpful to clarify these numerical observations about

the steady-state concentration of T in relationship to N . In the computations
that follow, we observe the coexistence of two different steady-state values of T :

• Tuninfected, corresponding to V = 0 and having a constant value of 1000
independent of N ; and

• Tinfected, corresponding to V != 0, and having a value inversely related to N .

Furthermore, there is a critical value Ncrit (called a bifurcation point) such that
for N < Ncrit, the steady-state value Tuninfected is stable, and for N > Ncrit, the
steady-state value Tinfected is stable.

The steady states Tuninfected and Tinfected are obtained from Perelson’s im-
munological model as follows:

dT

dt
= 0 =⇒ s + rT

(
1 − T + T ∗ + T ∗∗

Tmax

)
− µT T − k1TV = 0, (25)

dT ∗

dt
= 0 =⇒ T ∗ =

k1

µT∗ + k2
TV, (26)

dT ∗∗

dt
= 0 =⇒ T ∗∗ =

k2

µT∗∗
T ∗ =

k2k1

µT∗∗(µT∗ + k2)
TV, (27)

dV

dt
= 0 =⇒ NµT∗∗T ∗∗ − k1TV − µV V = 0, (28)

=⇒
[(

Nk2k1

µT∗ + k2
− k1

)
T − µV

]
V = 0. (29)

The uninfected steady state Tuninfected is obtained by taking V = 0 in (29), in
which case from (26) and (27) we have T ∗ = T ∗∗ = 0; and from (25), we have

s + (r − µT )T − r

Tmax
T 2 = 0.

Solving the quadratic equation gives

Tuninfected =
Tmax

2r

(
r − µT +

[
(r − µT )2 +

4sr

Tmax

]1/2
)

.

Using the parameter values given in Table 1, we have Tuninfected = 1000.
The infected steady state Tinfected is obtained from (29) with V != 0, so that

Tinfected =
µV

Nk2k1
µT∗+k2

− k1

.
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In this case, we find that Tinfected is a decreasing function of N .
To determine the stability of Tuninfected and Tinfected, we must extend slightly

the method introduced for a two-dimensional nonlinear system at the end of
Section 3.4. Observe that the Perelson model is a four-dimensional system:

dT

dt
=f1(T, T ∗, T ∗∗, V ),

dT ∗

dt
=f2(T, T ∗, T ∗∗, V ),

dT ∗∗

dt
=f3(T, T ∗, T ∗∗, V ),

dV

dt
=f4(T, T ∗, T ∗∗, V ).

Let Γeq = (Teq, T ∗
eq, T

∗∗
eq , Veq) be an equilibrium point satisfying f1(Γeq) =

f2(Γeq) = f3(Γeq) = f4(Γeq) = 0. The equilibrium point Γeq is stable if all
nearby solutions (i.e., those with

(
T (0), T ∗(0), T ∗∗(0), V (0)

)
sufficiently close

to Γeq) approach Γeq as t =⇒ ∞. To determine whether Γeq is stable, we com-
pute the Jacobian matrix





∂f1

∂T

∂f1

∂T ∗
∂f1

∂T ∗∗
∂f1

∂V

∂f2

∂T

∂f2

∂T ∗
∂f2

∂T ∗∗
∂f2

∂V

∂f3

∂T

∂f3

∂T ∗
∂f3

∂T ∗∗
∂f3

∂V

∂f4

∂T

∂f4

∂T ∗
∂f4

∂T ∗ ∗
∂f4

∂V





,

where all the partials are evaluated at Γeq. If all the eigenvalues have a negative
real part, then the equilibrium Γeq is stable; if any of the eigenvalues have a
positive real part, the equilibrium is unstable. In Exercises 6 and 7, you are
asked to use this method to verify that the stability of the uninfected equilibrium
solution changes for the values of N corresponding to Figure 3 and Figure 4.
(For the latter, it turns out that two of the eigenvalues are negative and one
positive. This explains why the plot of T (t) in Figure 4 first rises and remains
near the equilibrium level of 1000 before dropping sharply.)

Perelson et al. [1993] prove that the coexisting steady states exchange sta-
bility as N crosses the bifurcation value Ncrit ≈ 774. Perelson’s model provides
a nice example of the exchange of stability of equilibria known as a transcritical
bifurcation (see Figure 5).
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Figure 5. In the Perelson immunological model, a transcritical bifurcation occurs in which the two
equilibrium solutions with T = Tuninfected and T = Tinfected exchange stability as the parameter N
crosses a critical value Ncrit ≈ 774.

Exercises

6. Compute the Jacobian matrix for the functions f1, f2, f3, f4 given by the
Perelson model (21)–(24).

7. Show that the equilibrium Tuninfected = (1000, 0, 0, 0) is stable when N = 500
and unstable when N = 1400.

4.4 Chemotherapy Treatment
An important part of mathematical modeling is sensitivity analysis, which

investigates how the system behavior is affected by a change in one or more of
the model parameters or initial conditions. We have already seen one example
of this type of analysis related to the transcritical bifurcation value for the
parameter N .

Modeling the possible efficacy of chemotherapy treatment with antiretro-
viral drugs can be regarded as an extended form of sensitivity analysis. We
would like to study changes in parameters that effectively delay or perhaps
even eliminate altogether the onset of AIDS:

Drug Target What are the key parameters with greatest effect on the onset of
AIDS? Can drugs be designed to alter those parameters favorably?

Drug Potency How much does a key parameter need to be changed in order
to make a substantial difference in patient history? Can a drug accomplish
this degree of parameter change?
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Treatment Duration How long does a key parameter need to be changed in
order to make a significant difference in patient history?

Two of the key parameters that might be targeted by chemotherapy are:

• the rate k1 at which healthy T-cells become latently infected T-cells; and/or

• the number N of free viral cells created upon lysing of a healthy T-cell.

Four main classes of antiretroviral drugs are in use. All affect either the
value of N or that of k1.

• NRTIs, NNRTIs, and PIs all reduce N . NRTIs and NNRTIs do so by prevent-
ing the virus from reproducing inside infected T-cells. (AZT is an example
of an NRTI, a nucleotide reverse transcriptase inhibitor.) PIs still allow new
viruses to be produced when an infected cell lyses, but the PIs bond to the
viral enzymes in such a way that these new viruses are ineffective and cannot
actively infect new cells.

• Fusion inhibitors reduce k1 by bonding to the viral cells so that those cells can
no longer couple with healthy T-cells.

These drugs, taken separately or in combinations, can significantly delay
the onset of AIDS. Current research seeks to perfect the drugs, enhancing their
effect on the key parameters.

We illustrate how Perelson’s model can predict the effect produced by a
change in the parameter k1. We delegate a similar investigation of the param-
eter N to Exercise 8. (In addition, we encourage readers to design their own
simulations on the possible effectiveness of combination drug treatments.)

Let zp,t1,t2(t) be the step function defined by

zp,t1,t2 =

{
p, if t1 ≤ t ≤ t2;
1, otherwise.

Here p is a positive constant, 0 ≤ p ≤ 1, and the values of t1 and t2 specify the
time interval during which the drug treatment has a direct effect. We assume
that a chemotherapy treatment by a fusion inhibitor multiplies by a factor p the
rate at which healthy T-cells become latently infected during the time interval
t1 ≤ t ≤ t2. In other words, the smaller the value of p, the more effective the
treatment. This effect is incorporated by modifying (21), (22), and (24) of the
Perelson model (p. 12):

dT

dt
= s + rT

(
1 − T + T ∗ + T ∗∗

Tmax

)
− µ1T − zp,t1,t2k1TV, (21’)

dT ∗

dt
= zp,t1,t2k1TV − µT∗T ∗ − k2T

∗, (22’)

dV

dt
= NµT∗∗T ∗∗ − zp,t1,t2k1TV − µV V. (24’)
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We designate Perelson’s model with equations (21), (22), and (24) revised in
this way as Perelson (21’, 22’, 24’).

To study the effect of chemotherapy numerically, we must define what is
meant by the onset of AIDS. In what follows, we fix N = 1400 and use the
initial and constant values given in Table 1. Referring back to Figure 4, we see
that the T-cell concentration eventually drops dramatically from the healthy
equilibrium concentration of 1000 mm−3. We therefore define the onset of
AIDS to be the time tonset at which the value of T falls to 999 (Figure 6).

Figure 6. We define the onset of AIDS to be the time tonset when T falls to 999. In this case,
tonset ≈ 806.

Without chemotherapy (i.e., taking p = 1), tonset ≈ 806 days. For a six-
month chemotherapy treatment modeled by taking p = .4, t1 = 500, t2 = 680,
Perelson (21’, 22’, 24’) predicts that the progression to AIDS will be delayed by
about eight months (Figure 7).

Figure 7. An effective chemotherapy treatment, as modeled by Perelson (21’,22’,24’) with p = .4,
t1 = 500, and t2 = 680, delays the onset of AIDS by about 8 months (239 days) to tonset ≈ 1045.

Exercise

8. This exercise suggests a second way to modify the Perelson model to study
the efficacy of chemotherapy treatment. If, during the time interval t1 ≤
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t ≤ t2, a chemotherapy treatment using a drug such as AZT reduces the pa-
rameter N by a factor p, equation (24) of Perelson’s model must be modified
to

dV

dt
= zp,t1,t2NµT∗∗T ∗∗ − k1TV − µV V. (30)

Call the resulting system Perelson (30). Using the same values (p = .4,
t1 = 500, and t2 = 680) that we employed above for Perelson (21’, 22’, 24’),
what does Perelson (30) predict will happen to the value of tonset, the time
marking the onset of AIDS?

4.5 Discussion
Immunological aspects of HIV/AIDS are sufficiently varied and complex to

elude hope of a complete description by means of a single deterministic model.
Three major stages of this disease—primary infection, latency, and AIDS—
have been clinically identified, but the biological mechanisms responsible for
transitions between stages are not well understood. Perelson’s model only
seeks to capture the transition from the latency period to AIDS. The dramatic
decrease in the CD4+ T-cell concentration associated with the onset of AIDS
is explained mathematically by a transcritical bifurcation. The healthy T-cell
equilibrium level loses its stability, and the T-cell concentration is attracted
towards a much lower infected equilibrium level.

One reason why Perelson’s model does not capture qualitatively the dynam-
ics of all three stages of the disease is that viral mutations are not taken into
account. If the viral cell population V (t) is viewed in a nonhomogeneous way,
taking into account viral mutations that counter T-cells in absence of chemother-
apy, plus viral mutations that develop resistance to chemotherapy, all three
stages (primary infection, latency, AIDS) can be captured, as seen, for example,
in the models discussed by Kirschner and Webb [1996] and Hersberger et al.
[2002].

Since there is considerable variability in the length of the latency period
(2 to 18 years), the numerically generated graphs of the CD4+ concentration
in Perelson’s system give qualitative agreement with clinical data (as shown
in Figure 1.). Perelson’s model is elegant in its simplicity of conception and
flexible because of the large number of parameters. A strength of the model is its
ability to predict effects due to changes in parameters, as we have demonstrated
in discussing the possible effect of antiretroviral drugs in delaying the onset of
AIDS.

5. The HIV/AIDS Epidemic
We used Perelson’s immunological model (21)–(24) to show how the HIV

virus affects the immune system without drug intervention. We then modified
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